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A Model for The Processing of Position Information in the Human Visual

System

We present a model for the processing of positional information in the

human visual system, with particular emphasis on visual tasks that involve

the measurement of spatial separation. The model is in many respects a

radical departure from current thinking about problems in vision. Of

particular note is the fundamental significance we attach to the retinal

* photoreceptor lattice, considered as a two-dimensional spatial sampling

system. Mechanisms of neural interpolation are discussed and hyperacuity

Is a natural consequence of the model. Major concerns which we do not

address are questions of temporal dependence and the integration of

binocular information. We refer to the model as the scaled lattice

model.

The model consists of a number of elements summarized in Figure 1 as

follows:

- an external luminance distribution (image) is blurred by

convolution with a point spread function (or line spread function for a one

dimensional distribution) and then sampled by a lattice of retinal

photodetectors with center-to-center spacing d (Fig 1: asb,c).

- the sampled image is transmitted to higher visual centers where it

is reconstructed on a Moural lattice by interpolating between the samples

(Fig 1: de).

- the effective spacing of the neural lattice is some integer (N)

times finer than the spacing of the photodetectors, (Fig 1: the ratio of
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photodetector spacing to the neural grid Is 1/13).

- position information in the reconstructed image is extracted by

determining the locations of specific stimulus features on the neural

lattice, in particular the luminance peaks, (Fig 1: ef).

- the separation between two features such as peaks is determined by

counting the number of neural units between the features (Fig 1: ef.g).

- the error in determining a separation (As) is proportional to the

positional quantization (spacing) of the neural lattice.

- the interpolation factor N (the ratio of photoreceptor spacing to

neural unit spacing) varies with the separation of the peaks in such a

way that the fractional error in separation (A/s) is roughly constant.

noe effects of retinal sanmling

The following discussion assumes one dimensional images for

convenience. Consider the external image. It is described by the function

L(x) which gives the value of the luminance at every point x. For

convenience, we assume that x ranges from - to -. although the range is in

fact finite. The basic problem is this: since L(x) is a continuous

function of x. an exact representation of the function would require

measuring the luminance at an infinite number of points. This is clearly

not feasible since an eye is constructed with a finite number of

photoreceptors. Thus, the question arises of how well L(x) can be

represented with a finite number of measurements. A formal answer to this

question is found in the sampling theorem: if L(x) contained no Fourier

components with a frequency greater than frar, then L(x) could be

represented exactly by measuring its values at points separated in space by

n -. *.

'A. .1
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a distance of 1/(2fmax). Since L(x) has a finite width W, the total

number of measurements is 2 1 faEx. a finite number. The sampling theorem

also says that there is no way to represent L(x) with fewer measurements.

Thus sampling L(x) at an interval of 1/(2f.ax) gives the most Compact

possible encoding of the bandwidth limited L(x). However, L(x) is not a

priori limited in bandwidth. To apply the sampling theorem, we must remove

all Fourier components above fmax. This is accomplished in the eye by

convoluting the external image with the retinal (optical) line spread

function, which effectively filters out the high spatial frequency

components. Thus, the sampling theorem provides a very useful guide: if

the line spread function removes all Fourier components above fmax, then

sampling the band-limited function at intervals of 1/(2fmax ) entails no

further loss of information. In principle, the continuous band-limited

function can be exactly reconstructed from the samples by use of the

sin(x)/x function. However, it is not clear that it is necessary or even

desirable to exactly reconstruct the band-limited function everywhere.

After all, the band-limited function is already a distorted version of the

original luminance function.

For some visual tasks it might suffice to reconstruct the sampled

image exactly only near the luminance peaks, where the function is

quadratic and relatively easy to reconstruct. Indeed certain forms of

distortion in the reconstruction might be useful such as the edge

distortion discussed bolow. However, the sampling theorem gives a good

estimate of what is possible, and we assume the basic reasoning is

applicable to the human visual system: the line spread function acts to

band limit the external luminance distribution in such a way that the image

. . . .7
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falling on the retina can be exactly recovered from the sampled version of

the image. To see more clearly what Is lost and gained by this process

consider Fig Is and lb. Fig la shows the external image, a narrow line

* (delta function). Fig lb shows the image falling on the retina after

* convolution with the line spread function. The original narrow Image has

* been spread out and now has a shape dictated by the line spread function.

Thus at the initial stages of image reconstruction we have lost the ability

to measure widths narrower than the line spread function, and also the

ability to resolve two lines whose separation is less than the width of the

line spread function. Note however that the position of the peak of the

distribution in Fig lb coincides exactly with the position of the original

* line, and thus no positional Information has been lost, as long as the

* peaks of the external distribution are well separated. From this point of

* view, the combination of convolution with the line spread function followed

by retinal sampling has effectively compressed almost all the positional

information of the original distribution into a finite number of

- measurements for transmission to the cortex, where the ability to recover

* the position of the original line in Fig la will only be limited by the

* ability to locate the peak of the distribution in Fig lb.

The above argument can be restated without reference to the sampling

* theorem. If the line spread function were infinitely narrow, the luminance

at a sample point would contain information about the external Ina$@ only

* at that point. With a-finite width line spread function, the luminance at

* each sample point contains information about the external image extending

over a range of positions around that point. Since the luminanoc at

location x is now highly correlated with the luminance at x + Ax, if Ax is
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much les than the width of the line spread function, there is no need to

measure the luminance at x + Ax. Thus a finite sampling interval is

adequate. A useful analogy is that the photoreceptors convert a continuous

distribution into what is essentially a histogram. The center of a peak on

a histogram can be determined quite precisely (to an accuracy much smaller

than the bin size) as long as the width of the peak is several bins. (If

the peak fell entirely within one bin, we could not determine its position

to an accuracy better than the bin width). The line spread function acts

to guarantee that the minimum width of the peak is several bins. Wo

emphasize that the image must be blurred in some manner so that a narrow

external image excites at least three photoreceptors. (The number three

arises because a quadratic has three coefficients.) If not, the peak

position could not be recovered from the sampled measurements. It is

estimated that in the central fovea the line spread function covers

approximately four photoreceptors and thus this condition is met.

Peaks and Position Information

We regard luminance peaks (maxima) as important features in the

analysis of an image. There are a number of reasons to single out peaks

for special consideration. One reason is illustrated in Figs 1 and lb.

As discussed above, there Is a close connection between the peak in lb and

the position of the line in la. In fact, regions where the luminance

rises or falls continuously, or remains constant, seem to contain little

information about 'positions'. 'Position' generally seems to be associated

with a change in the luminance slope, and a peak occurs when the sign of

the slope changes. Peaks have a number of other desirable properties.

. . - . . . .
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Peaks are regions where a quadratic approximation provides a good fit to

the measurements, and thus peaks are quite easy to reconstruct accurately.

Since a quadratic function has three coefficients. reconstructing a

quadratic only requires input from three sample points. In contrast to

* this a function like sin(x)Iz is a high order polynomial and requires many

* inputs. Similarly. peaks (being local features) are determined by

comparing the luminances at nearby points, and a peak detector (Fig if)

only requires input from three adjacent neural units. In contrast to this

an edge or 'zero crossing' detector requires as Input both the value of the

luminance at each point and the value of 'zero' at each point. The 'zero'

* point is not a local property of the image but rather would have to be

defined by averaging the image over a broad region in some manner. This is

a considerable complication and it is hard to see how it could be done with

- sufficient accuracy. Adding a constant luminance to an image does not

* affect the peaks, and since adding a constant luminance gradient shifts

peaks by an amount inversely proportional to the curvature of the peak.

* peaks of the same curvature are shifted by equal amounts, leaving their

* separation unchanged. Thus slowly changing luminance backgrounds have

* little effect on the peaks. Another interesting propert)r of quadratics is

* that the sum of a set of quadratics with equal curvatures but different

centers will be a single quadratic whose peak coincides with the mean of

the centers of the original quadratics. This indicates that an unresolved

Image (one narrower than the line spread or interpolation function) will

have only a single peak which coincides with the mean (center of gravity)

of the luminance distribution.

TV171itY. -:.~~ *'>.. .. ..- *
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There is. however, at least one problem with concentrating on

luminance peaks for position information. An edge or step function

certainly has a definite position, but there are no peaks to mark it.

There is an interesting way around this problem. Suppose the interpolation

function had a shape like that in Fig 2a, which is roughly the shape

appropriate for quadratic interpolation. The rest of Fig 2 shows what

happens to a step function (2b) after being convoluted with the line spread

function (2) and then reconstructed (2d) using the interpolation function

of Fig 2a. The interpolation causes overshoots and undershoots, like Mach

bands, to occur and thus produces a peak to mark the edge. Thus the

'imperfect' interpolation has a very useful side effect, the association of

a peak with a luminance edge in the reconstructed function. Interestingly,

these induced peaks do not coincide with the original stimulus edges but

are systematically shifted. This introduces a systematic error in the

position of an edge that might be measurable. (However, since the error is

largely systematic, it can in principle be corrected for.)

The interpolation mechanism

In this section we discuss the mechanism which performs the

reconstruction of the sampled image. Te assume this process is linear in

the sense that the output is a linear function of the inputs. Then the

output can be considered as the convolution of the (sampled) input function

with an interpolation function. The interpolation function gives the

weight assigned to each input (photoreceptor) as a function of the distance

between input position and output (neural unit) position. There are (at

least) two quite different methods to perform this interpolation.
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Direct convolution. The first, which we call interpolation by direct

convolution, is illustrated in Fig 3a. In this scheme each neural unit

(circles) receives input directly from the nearest photoreceptors

(triangles). We have drawn each neural unit with three inputs, since this

is the minimum number required for quadratic interpolation, and the figure

shows a neural lattice with an interpolation factor (N) of 3. The inputs

are summed with appropriate weights to implement the interpolat'on

function. We can see that this scheme is characterized by a large number

of connections per photoreceptors (3N) and a large number of different

weights (31/2 rounded upwards).

Mutual couvling. An alternative scheme is presented in Fig 3b. We call

this interpolation by mutual coupling, and it is similar to existing models

of lateral inhibition (Ratliff and Hartline, 1959p Ratliff, Hartline and

Miller, 1963). Again each neural unit typically receives input from three

sources: itself and its two nearest neighbors. Each photoreceptor also

provides input for the neural unit immediately below it, but not for any

other. The neural units form a mutually coupled system obeying a second

order difference equation, with the inputs from the photoreceptors

providing the excitation function. The solution of such a system is given

by the convolution of the excitation function with the impulse response of

the mutually coupled system, which is exactly the desired result.

This scheme has a number of significant advantages over the first.

There is only one connection per photoreceptor independent of the

interpolation factor N. The number of different weights is also

independent of N. There is one weight for the photoreceptor connection, a

.. . . . . .- - - -.". * --. - .'
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second for the connection between a neural unit and itself, and a third for

.* the connection between a neural unit and its nearest neighbors. Another

weight would only be required if each neural unit had to be connected to

its second-nearest neighbors, which would result in a fourth order

difference equation. Another important advantage in the mutual coupling

scheme is that all neural units are the same, except for the additional

photoreceptor input which some receive. In the direct convolution scheme,

the set of weights used by each neural unit depended on the position of the

neural unit relative to the photoreceptors. which requires that each neural

unit 'know' its position to interpolate properly. This complication does

not arise in the second scheme where all neural units are essentially the

same. That is, for the direct convolution, the interpolation function was

explicitly contained in a set of weights that depended on position, while

in the mutual coupling case the interpolation is done implicitly by the

impulse response of the second order system. There is one further

advantage to the second scheme. Suppose that something caused the output

of one neural unit to fluctuate upwards. Since this output is an input for

the adjacent neural units and we estimate that the relative weight given to

nearest neighbors is positive (and approaches unity as the interpolation

factor increases), these neural units will also fluctuate upwards, with the

not result that the fluctuation in the difference between adjacent neural

units will be highly suppressed. Since peaks are determined only by these

differences, this results in a considerable degree of noise suppression for

the peak detectors, a suppression that does not occur in the first scheme.

A natural consequence of the mutual coupling scheme is that the

interpolation factor (the ratio of photoreceptor to neural unit spacing)

" ',". ,",'. .'.','/ ," """" '. ',"' " """""""' " ": , \ '" " :""" " '" " '" " " "° "","" ' ". " .
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must be an integer. There cannot be a fractional namber of neural units

between two photoreceptors. The direct convolution scheme only requires

that the interpolation factor be the ratio of two integers to guarantee

that the neural lattice is coherent with the photoreceptor lattice.

However, the mutual coupling system as illustrated In Figure 3b is

oversimplified since a one dimensional system with only nearest-neighbor

couplings cannot have an impulse response as shown in Figure 2a. However*

a two dimensional system on a hexagonal lattice probably could have such an

impulse response, at least for certain orientations, and a hexagonal system

with nearest-neighbor and second-nearest-neighbor couplings almost

certainly could. Since the primate photoreeptor array has been shown to

be a highly regular hexagonally packed lattice (Miller. 1979p Hirsch and

Hylton, 1983) we consider the mutual coupling system to be a viable

notion.

Now let us consider the constraints that can be placed on the

interpolation function. The most important is that peaks should be

reconstructed accurately, and this will be true of most any symmetric

function of reasonable width which is itself quadratic near x - 0. Te

estimate this wiAth as follows. As noted above, quadratic interpolation in

one dimension requires input from at least three photoreceptors. This sets

a minimum 'range' of about 41.5 photoreceptors. A two dimensional

quadratic has six coefficients, and thus requires at least six inputs. If

each photoreceptor has six neighbors, then a lrange' of 1.5 photoreceptors

is again sufficient. Suppose the range were greater than this. If the

image were indeed quadratic, this would allow a more accurate constrained

interpolation. However, If the image were not quadratic, this would result
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in the peak at a particular position being shifted around by the luminance

at a relatively distant point. If 9e assume that two fully resolved lines

should not interfere with each other, this sets a maximum range roughly

comparable to the range of the line spread function for very fine

separations. Then, the interpolation functions might look like Fig 2a with

a total width comparable to the line spread function, say about 1 or 2

minutes from the positive peak to the negative peak. However, this

assumption does not seem to be correct (i.e., there are 'crowding

effects').

A series of experiments reported by Westheizer et al.(1975) may

provide a better estimate of the width of the interpolation function.

Westheimer has shown that the ability of observers to discriminate the

vernier offset of a pair of vertical lines or the orientation of a single

vertical line is susceptible to interference from flanking lines, and that

the interference is maximum when the flanking lines were offset from the

target lines by about 2 - 3 minutes of arc. If we attribute the

interference to a conflict between the negative sidelobes of the flanking

lines and the positive central lobe of the target lines (perhaps by causing

multiple peaks or some other non-quadratic effect), this indicates that the

negative lobes are about 2 -3 minutes from the central positive lobe.

reasonably comparable to the previous guess. Indeed, if the exact

mechanism of the interference were understood, this experimental technique

might provide a fairly direct method for determining the exact shape of the

*° interpolation function.

As discussed below, the interpolation factor N varies in such a way

that the spacing of neural units and the Jnd in separation are roughly

.! . . . . .
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proportional to the separation between luminance peaks. This raises the

possibility that the width of the interpolation function is not constant

but rather scales with peak separation (or rather with N). This would

naturally follow if peaks and edges tended to become wider as the

separation between then increased.

Separation measuring And scaling

In this section we discuss the process of measuring separations

between peaks. This discussion is largely based on results of an

experiment which effectively measured the fractional and in separation

(As/a) as a function of the inverse separation (ls) between two peaks

(Hirsch and Hylton, 1982). (The and for discriminating between spatial

frequencies was also measured as a function of spatial frequency, and those

results weore also found to depend only on the distance between two peaks in

the spatial frequency grating. An example of the results appears in Fig.

4. The relation between frequency and separation is f - I/s and Af/f -

As/s). It was found that As tended to take on discrete values given by 1/N

times the photoreceptor spacing, and that the value of N varied with a in

such a way that As/s was roughly constant. Specifically, it was found that

As/s as a function of I/s consisted of segments of constant As with As

given by .008/N within a segment, and that the transition between

different segments occurred at intervals that were equally spaced in 1/s

and coincided with a maximum value of As/s of approximately .032. On the

average, As/s had a value of .025.

The first step in separation measurement is to locate the positions of

the peaks. This is illustrated in Fig if where each neural unit, plus the

.-..... ". *. .7
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two adjacent neural units, is fed into a peak detector (squares). The peak

detector compares the two successive differences between the three neural

units and decides if the sn of the slope has changed. The output of the

peak detector is a logical signal indicating that a peak has occurred

within +1/2 neural unit of the current position. Thus the effective

spacing of the neural units introduces a fundamental limit to the accuracy

with which a peak can be located, the positional quantization error of the

neural unit lattice. The location of the second peak is similarly

determined to an accuracy of +1/2 neural unit. The distance between the

two peaks is then determined to an accuracy of +1 neural unit. This

reflects the essentially digital nature of the position information:

separation is measured by counting the number of neural units separating

the two peaks, and the counting process is subject to a +1 count

uncertainty. Alternatively, the quantization error can be attributed to

the 'rounding' of the peak position to the mearest neural unit position.

It is clear that the limit of resolution in separation is proportional

to the spacing of the neural units. If the neural unit spacings take on

the values dN as described previously, then the jnd in separation will be

proportional to d/N. Experimentally, we find that As - .008e/N, where As

is defined as the difference in separation necessary to correctly

discriminate between two different separations 75% of the time. If we

assume the psychometric function is gaussian, then a 751 correct response

corresponds to a mean displacement of .68 standard deviations. Thus the

rue error is .00801(.68) - 1.47 0 .008o. Anatomically, the photoreceptor

spacing d is estimated to be about 30 seconds or .0080 Westheimer, 1979),

and hence the rns error Is 1.47 C d or 1.47 counts. Since the maximum

- * - - .-....... lJI/ " l-. .,.. .. , -, ., ,,-. -. . -,-,,-,' , ,, . , / " " ' " ';, '; ; ;' "" " " ' " '
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quantization error is only 41 count, an ma value of 1.47 is clearly

larger than expected suggesting that there say be other sources of error

which are proportional to the neural unit spacing. (Te would expect the

rus error to be about .5-.7 counts for pure quantization error). An

alternative explanation might be that the peak detectors are spaced every

two neural units rather than every neural unit, doubling the quantization

error.

Scalina

Results of the cited experiment show that the Jnd in separation As is

not constant but rather varies with the inverse separation (1/,) being

discriminated in such a way that As/s is roughly constant. That is, the

value of N is automatically chosen to keep the neural unit spacing roughly

proportional to the separation between the peaks, which is generally

described by saying that As scales with s.

Suppose two reconstructed peaks are separated by a distance a on a

neural lattice with spacing Ax. Then the separation in terms of neural

units (counts) is given by L-s/Ax with a +1 neural unit uncertainty. The

fractional uncertainty in separation is given by I/L - Ax/s. From this it

can be seen that requiring the fractional error to be constant is

essentially the same as requiring that the number of neural units spanning

the two peaks L) be constant. As a becomes small the fractional error

becomes large, and at iome point reaches a maximum tolerable value of

coax - 1/Liin. (Numerically, asx is found to be .032 and hence

Lmin - 30.) To keep performance acceptable for smaller values of a the

value of Ax must be decreased. As discussed above, the nature of the

• • - . . , ~ ~~~~~~~................... o ," .. . .... .. oo•. .. '..."o°., o .• - ,• -°
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interpolation mechanism is such that Ax has the form dIN where d is the

photoreceptor spacing and N Is the integer interpolation factor. Then the

fractional error is given by (d/N)/s and the minimum value of N for a given

* is N - Lmin d/s, rounded upwards.

One question that might arise at this point is why N varies at all.

At first glance it might seem simpler to keep N at a large fixed value.

The most direct answer to this is that experiments show that N does vary

and in fact takes on the value required to keep As/s constant. There are

two arguments to justify this behavior. The first comes from a

consideration of the errors introduced in separation measurement by errors

in the spacing of photoreceptors. Assume that the photoreceptor lattice is

constructed by placing end to end intervals of mesa width d and error a.

The different intervals are assumed to be independent of each other. Then

after we have placed down L intervals we have covered a mean distance of s

- Lw with an accumulated error of a*SQRT(L) - aCSQRT(s/d). Thus the

accumulated separation error on the photoreceptor lattice increases

proportionally to SQRT(s), and this error will exceed any fixed error as a

increases. The essential point is that there exist sources of error which

increase as s increases and thus As must also increase with a. If we

assume that objects have sone natural width which increases as the

separation between objects increases (i.e., that the boundaries of objects

become bigger as the objects become bisser) then this gives another source 

of error that increases with a.

The photoreceptor spacing argument can be inverted to place a limit on

the fractional rus error in photoreceptor spacing (a/d). We find

experimentally that the average jnd in separation is given by As - a C 5

. .. . . . . . . . ... . .. . . ... ..- ,. ... ." . . . ., . .. • - . ,, .. . , . .. --.. . . .-. '...,-.- -' .. , . . ,, , . ", " ' 'I I t h b I l i ii i |
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whers e - .025. As discussed above, the Jad corresponds to .68 times the

rns error in a. Thus if the photoreceptor spacing error is not to dominate

As, we require that the contribution of the photoreceptor error to As is

less than 1/2 the observed value of As or

.68 a @ SQRT(s/d) <1/2 a *s or

o/d ( 1/2 11.68 0 0 SRT(s/d).

The average value of L - s/d Is 1/- - 40 requiring that a/d < .12, a

reasonable number. Assuming a minimum separation of 4 photoreceptors (s/d

= 4) requires a/d ( .037, a fairly small number. Perhaps there exists a

small region of the fovea in which photoreceptor spacing error is small,

and the measurement of small separations could be restricted to this

region.

As an alternative to requiring accurately spaced photoreceptors, it is

conceivable that the system includes a 'self calibration' feature that can

correct for errors in photoreceptor spacing. This is possible since the

spacing errors cause systematic, position dependent, errors in a. If a is

measured through the AND Sate mechanism illustrated in Fig 1S, the

calibrations could be done by sweeping a pair of peaks of fixed separation

across the retina and marking all AND gates which respond as belonging to

the same value of a. This limits the error contribution from photoreceptor

spacing to about one neural unit since a spacing error greater than this

will result in the AND Sate being classified as responding to a different

*value of s. Note that this error is still proportional to the neural unit

spacing. (Similarly, since any errors in the interpolation weights

represent systematic errors, it is possible to correct them.) However,

while such corrections are conceivable, we feel that it is more likely that
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the photoreceptor lattice is constructed with sufficient accuracy to begin

with.

The second argument in favor of scaling is that having a number of

different N's does not necessarily increase the complexity of the whole

system, defined as the number of parts required to build it. In fact, if

one attempts to count the total number of neural elements required to

construct a hardware separation detector, it turns out that a system with

As/s constant actually requires vastly fever elements than one with As

constant. This occurs because the system must check all pairs of peak

detectors and the system with scaling has many fewer pairs. This is

illustrated in Fig 1S. The separation detector must perform the operation

'Peak(x) AND Peak(x + a)* OR'ed over all starting positions x. To see the

effect of scaling, assume that the left hand peak position is fixed at x -

0. Then the number of pairs (AND Sates) required to cover all possible

position for the right hand peak from Smin to smax is liven by

$max

As

$min

If we take As as the constant Asmin - smin then the number of

pairs is (/)(smax/entn) On the other hand, if As varies with a as

As - a .s, the integral becomes

W-/) In (8max/emin).

For large amax/Smin the system with scaling requires many fewer pairs

than the one without.

The above analysis corresponds to a one dimensional system in which

the image is required to be exactly centered in the visual field, and is

- ~-I
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p

p.

only meant as an illustration. The correct analysis requires knowledge of

how the neural units are distributed in two dimensions as a function of

eccentricity. Actually, the above case is relatively unfavorable to the

scaling mechanism. The true advantage of the scaling mechanism is probably

much better than x/ln(z). Extending the above argument to two dimensions

introduces an extra factor of s/As under the integral sign. Then with no

scaling the number of elements is 1/2 (1/02 (smax/smin)2 but with

scaling the number is (1I/01 In (Smax/smin), still only a logarithmic

increase.

It should be noted that the notion of scaling presented here differs

fundamentally from the usual notion of scaling with eccentricity. The more

conventional view is that there exists a single non-linear mapping between

the retina and the cortex, with a step in distance of constant size on the

cortex corresponding to a step in distance on the retina whose size

increases with eccentricity. In contrast to this, we suggest that there

exists a set of linear mappings from the retina to the cortex with

different scales or magnification factors. While the different mappings

have different magnification factors, within one map the magnification

factor is constant. The physiologically and psychophysically observed

increase in magnification factor with eccentricity presumably occurs

because progressively finer mappings are restricted to progressively

smaller eccentricities. This corresponds to requiring that images be

roughly centered in the visual field. Then the boundaries of wider objects

tend to fall at larger eccentricities while small objects lie within small

eccentricities, and the fine maps are only needed at small eccentricities.

Further, if we assume that roughly equal neural resources are allocated to
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each map, then the total area that can be covered by a map decreases as its

fineness increases. As a function of eccentricity, we might expect As to

be constant over some central region covered by the finest map, and then

increase in a series of steps as the boundaries of successively coarser

maps are exceeded, with As roughly proportional to eccentricity. Note that

there is no a priori reason for the various maps to be circularly

symmetric. The scaled linear maps have tremendous advantages over a

nonlinear map in terms of the simplicity of image analysis and pattern

recognition. It is also difficult to accurately measure distances on a

nonlinear map since this requires integrating variable magnification

factors along some path which is likely to be difficult to define.

Scalint at Low Freauencies

The discussion of scaling above was basically addressed to a high

frequency or hyperacuity region involving neural lattices with spacing

equal to or less than the photoreceptor spacing. Given the advantages of a

scaled system over a non-scaled system, it would seem quite reasonable to

assume that the scaling property is general and applies to all image sizes

or spatial frequencies accessible to the human visual system, say angular

sizes of 900 to 11300, and preliminary measurements indicate that this is

indeed the case. We now discuss how scaling night be accomplished at low

frequencies. At high spatial frequencies the effective neural spacing is

*dIN where d is the photoreceptor spacing and N decreases with decreasing

frequency in order to keep d/N proportional to a - 1/f. This scheme will

fail eventually simply because there are no positive integers less than 1,

* and indeed a breakdown in the dN dependence is observed to occur below 2

. .* . -.-.- .- .- - .2 . .-. '. ' -.. --. -.-- -.-* - ,' - ., : . " 2 * * ' -, * " - .d k " ,*
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cycles/deg. with As remaining roughly proportional to a rather than

becoming a constant equal to d. In fact, experimentally we observe that

for foveal measurements between about 1 and 2 cycles/deg, As takes on the

value d 0 2 which we interpret as evidence for a neural lattice with

spacing twice the photoreceptor spacing. Thus at low frequencies the

function of the scaling system is to reduce an excessively fine retinal

photoreceptor lattice to a coarser neural lattice which is presumably more

tractable since it has fewer elements. There are two straightforward

mechanisms for accomplishing this, one possible only in the central region

of the retina (defined as the region where each photoreceptor has its own

connection to the cortex) and the other suitable for foveal and also

peripheral regions where there are many fewer cortical connections than

photoreceptors.

In the central region where there exists one connection per

photoreceptor the basic task is simply to produce a coarser lattice. This

could be done simply by constructing a neural lattice whose spacing is N

times coarser (not finer) than the photoreceptor spacing and using an

interpolation mechanism like Fig. 3b in reverse, with 1 neural unit output

per N photoreceptor inputs rather than N outputs per each photoreceptor

input, with a broad interpolation function to provide pooling over N

*photoreceptors rather than an interpolation between photoreceptors. In

this case As takes on the form d • N as opposed to the previous case where

As was d/N, with the value of N increasing to keep As/s constant as a

increases. Note that N now increases with a to keep As/s from getting too

small, whereas previously N increased as 1/s increased to keep As/s from

getting too large.

• __ ~~~~~~~~~~~~~~~~~~........................ ...-..-..-....... ..-.- -.. ..-.-- i'-. .2.-- . .".,.-:..,- - -
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The above scheme is only feasible in the central region where there

already must exist one cortical connection per photoreceptor to allow I/N

interpolation. In peripheral regions where the hyperacuity interpolation

mechanism does not exist it would be foolish to transmit the output of

every photoreceptor to the cortex only to discard most of the information.

A such more elegant scheme would be to pool groups of photoreceptors into

spatial sampling units, effectively forming large photoreceptors, and

transmit only one output per each pool to the cortex. As long as the

widths of the pools and the center-to-center spacing of the sampling points

(pool centers) is such that a narrow feature contributes to at least three

sample points one can then invoke a cortical interpolation mechanism

identical to the one that interpolated between individual photoreceptos to

now interpolate between the sampling pools. Indeed, the whole mechanism is

identical to the one discussed for high frequencies except that the line

spreading is now accomplished by retinal pooling rather than optical

blurring, and the retinal lattice is formed by the centers of the pools

rather than by individual photoreceptors. The retinal pooling mechanisms

night look like Fig. 3b in reverse, as above. If the center-to-center

spacing of the pools is K times the photoreceptor spacing d, then As has

the form Kd/N where K is the retinal pooling factor and N is the cortical

interpolation factor.

Preliminary results suggest that the second scheme is indeed employed

at low frequencies, at. least for frequencies between .25 and 2 cycles/de

(image sizes between .50 and 40) in the fovea. Within this range As

appears to have the form Kd/N where d is .008. K is 8, and N takes on the

values 1 through 4. (That is, there are 4 segments to the Af/f curve

I ....... . .~-. . .- .. .* "- "'*;
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between .25 and 2c/des.) This is slightly different frm the high

frequency region where N took on the values 1 through 7 or 8. A retinal

pooling factor of 8 corresponds to a center-to-center spacing for the

retinal pools of 8 0 .0080 - .0640 or 1/160. If we assume that there are a

sequence of pool sizes each 8 times larger than the last, then image sizes

between 320 and 4' will be handled by pools with center-to-center spacing

8 * 1/160 - .50 and image sizes larger than 320 will be handled by pools

with center-to-center spacing of 8 $ .50 - 4 . While these numbers are

somewhat speculative, it is clear that the high frequency band (K - 1. 8

segments, 2 to 32 c/deg) plus three low and intermediate frequency bands (K

- 8, 64, and 512 with 4 segments each, minimum frequencies 2/K cycles/deS)

provide a set of 20 neural maps spanning image sizes from 1/320 to over

1800 with As/s or Af/f never varying by more than a 2/1 ratio. The

different values of I correspond to sampling by individual photoreceptors

( - 1) and to sampling by pools of photoreceptors with center-to-center

* spacing of 1 C .0080 - 1/160, .5', and 40 respectively.

Since large images tend to be associated with high eccentricities we

expect that there should be a correlation between the distribution of the

sizes of the retinal sampling pools and eccentricity. In the fovea all 4

values of K might coexist with the smaller values of K disappearing as

eccentricity increases and only the largest pools existing at the highest

eccentricities. It will be interesting to see if this simple scheme can be

reconciled with the anAtomy of the retina.

. . . . . . . . .. . . . . . . . ....
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Aplication jo Other Experiments

The discussion above was specifically based on a particular

experiment, the discrimination of the separation between a pair of parallel

lines as a function of the separation. Our model must of course be very

general if it is to be useful. We present here on application of the model

to some other experiments, albeit also very simple ones. Application of

the model to more complicated visual tasks probably would not require any

fundamental modification.

Separation-discrimination tasks can be regarded as having two

independent characterizations. The first is the spatial scale a and the

second is the jnd or resolution scale As. For the psallel line task s was

taken to be the perpendicular distance between the two lines and As was the

Jnd in separation also measured along the perpendicular. The parallel line

task is a special case in which the perpendicular separation between the

lines is both the stimulus variable used to measure As and also the

scale-setting distance.

A quite different situation prevails in the classical vernier

discrimination task which measures the Jnd for aligning two pointers

separated by some gap. In this case the spatial scale s is defined by the

length of the gap between the two pointers whereas As is the Jud lateral

offset between the pointers and is measured perpendicular to the gap. Thus

a for the vernier discrimination task is not the stimulus variable but

rather . parameter of the experiment. Further, s and As are measured along

* orthogonal directions. Thus, outside the context of our model, it is by no

means obvious that there should be a direct connection between a and As

(gap length and vernier threshold). Nevertheless, we predict that As for

-- ------------------- ----- .. . ..- ... .. . .. ..--....- .. ...- -...
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vernier discrimination should be the same as As for line Separation

discrimination if the gap length equals the parallel line separation,

neglecting orientation effects discussed below. Preliminary results

confirm this prediction. The connection between the two experiments can be

seen more clearly if we reduce the lines in the two experiments to small

dots. Then the parallel line task measures As along the line connecting

the dots whereas vernier discrimination measures As perpendicular to the

line connecting the dots. The scale a in both cases is set by the distance

between the dots, and it is a which determines As for both directions

(neglecting orientation effects). This example indicates that applying our

model to other experiments mainly requires the identification of the

scale-setting distance a, which may not be easy for complicated tasks.

There is another concern in applying the model to small separations.

Much of the discussion above was based on an experiment 'which effectively

measured the ability of observers to discriminate the separation between

two parallel lines'. We included the word 'effectively' because that

experiment mainly measured the ability of observers to discriminate between

sinusoidal spatial frequency gratings of different spatial frequencies. We

have shown that spatial frequency discrimination is the same as

discriminating the separation between two lines with separation a l/f,

where f is the spatial frequency. However, sinusoidal gratings possess one

sterling virtue that makes them more suitable for studying small values of

a (high values of f) than the corresponding line pair (or dot pair) would

be. This virtue is that no linear operation (line spread, interpolation)

can change the shape of the grating, but rather can only change the

contrast and shift the phase. Thus the peaks of a grating of frequency f
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are always separated by a - 1/f. no matter how small a gets (when it gets

too small, the &rating critrast becomes too low for the grating to be

seen). In contrast to this, as two lines Set close together, their

profiles (as determined by the line spread and interpolation function)

begin to interfere so that the separation between the two peaks will no

longer simply be the separation between the external narrow lines. When

they get too close together there will only be one peak and the two lines

will appear to be a single fat line. Thus in practice there will often be

critical minimum separations and line lengths in an experiment (on the

order of a few minutes) and our model might break down if these conditions

are not met. We also find that failing to randomize the positions of

stimuli can produce unexpected results, and that a repetitive stimulus such

as a grating generally gives better defined segmentation than a non-

repetitive pattern such as a single pair of lines, possibly because the

repetition provides stronger excitation to the scale setting mechanism.

Orientation Effects

There is one further point that needs to be made in our model which

does not appear in any of the one-dimensional arguments given previously.

The problem is the identification of the perpendicular distance between two

parallel lines as the appropriate definition of their separation. While

this is a simple and appealing definition it is by no means obviously

correct. One could certainly imagine that there existed certain intrinsic

measurement directions fixed with respect to an observer's head orientation

and that separations are always measured along one of these natural

directions rather than along a direction defined by the stimulus itself.

.s""
-A , , I"
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This leads to the possibility that both s and As are dependent on the

orientation of the stimulus relative to the observer. Since we have

assigned the photoreceptor lattice a fundamental role in our model, it

would seem necessary to assume that the two dimensional characteristics of

the photoreceptor lattice must be of importance. The fundamental two-

dimensional characteristic of photoreceptors is their hexagonal packing and

the likely consequence of this for our model is that there exist intrinsic

directions for measuring separation and that these directions are separated

in orientation by 600. This suggests that the effective distance between

two parallel lines is the perpendicular distance divided by the cosine of

the angle between the perpendicular direction and the closest intrinsic

direction. Since this angle cannot be greater than 300, the maximum

possible effect is I/cos(306) - 1.15. Thus, the effective distances may be

larger than the perpendicular distances by as much as 15% (or spatial

frequencies lowered by 15%) as orientation is varied. Since the effect is

systematic, it can in principle be corrected for and thus may not be

measureable. However, if changing the orientation caused the scale setting

separation to pass through a transition from one value of N to another, the

resulting change in As would be measureable. and indeed we have observed

this effect (Birsch and Hylton, 1983).

Stereo Vision

We have not considered stereo vision in detail. However, much of the

model seems directly transferable to stereo acuity tasks. Te make this

argument based on two results reported by Butler and Westheiner (1978).

First, stereo disparity thresholds are susceptible to interference from

, I-.-.'.'...-'.. ... ... ', - *.' . . . .. .- ', . ' ,' .% %'."' ', ' I , , , . l
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flanking lines in direct analogy to the interference of flanking lines on

vernier acuity thresholds and line orientation thresholds. Since we

attribute this interference to the interpolation mechanism, we take this as

evidence that sampling and interpolation as discussed above applies to

stereo vision.

Butler and Westheimer (1978) also report that stereo disparity

thresholds increase as disparity increases, which he describes as a

disparity tuning function. Te interpret this as the analog of As/s scaling

for stereo vision where As is identified as the Jnd in disparity and a is

disparity. We suggest that disparity threshold as a function of disparity

is analogous to line separation threshold as a function of line separation

and vernier offset threshold as a function of gap length. The rise of

disparity threshold with disparity is not the result of a disparity tuning

mechanism but rather a consequence of the ubiquitous scaling mechanism,

with disparity identified as the scale setting variable for stereo acuity

tasks. This night be envisioned as two parallel lattice planes, one for

each eye, stacked vertically and registered in such a way that features

with zero disparity are vertically aligned. Disparity is then the distance

measured parallel to the lattices between a point in one lattice and the

corresponding point in the other, whereas a spatial separation is measured

between two points in the same plane, establishing the analogy between

disparity and spatial separation. Then disparity thresholds should scale

with disparity just as. spatial thresholds scale with spatial variables.

Summary

We have presented a model for the processing of positional information

Vo

. . . .. .....
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in the human visual system. The model can be sumarized as follows.

An external luminance distribution or image is blurted by convolution

with the line spread function so that a narrow line is spread over at least

three photoreceptors. The blurred Image on the retina is then sampled by

the photoreceptor lattice and transmitted to higher visual centers. The

neural represenation of the Image is constructed by interpolating the

sampled function onto a lattice of neural units. The reconstruction

process is implemented by convolution with the interpolation function. The

effective spacing of elements in the neural lattice is finer than the

spacing of photoreceptors by an integer factor N. The neural lattice

spacing determines the level of accuracy to which positions of stimulus

features can be determined. Higher values of N correspond to higher levels

of spatial resolution.

Position information in the recontructed image is extracted by

determining the locations of specific stimulus features on the neural

lattice, in particular the luminance peaks. The separation (a) between

features such as peaks is determined by counting the number of neural

units between the features. Hence the error in determining a separation

(As) is proportional to the positional quantization error (spacing) of the

neural unit lattice.

The interpolation factor N (the ratio of photoroceptor spacing to

effective neural unit spacing) is chosen to keep the fractional error

(As/s) .approximately constant. More generally, the features whose

positions or separations are being analyzed define a spatial scale (s)

which is also used to set the scale for the spatial resolution (As).

A.
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There is an interesting way to summarize the sampling and

reconstruction system. As discussed above, the 'coarse' sampling by the

photoreceptors is the most efficient encoding of the image falling on the

retina. This is certainly an advantage when transmitting the information

from the retina to the cortex. However, in the cortex the most efficient

possible encoding is not necessarily a convenient representation of the

image. The interpolation system provides a mechanism for unpacking the

encoded Information into a more easily analyzed form. The neural lattices

of different N represent different degrees of unpacking, and the degree of

unpacking selected is chosen to keep As/s constant. The neural

representations of different N contain no information that was not present

in the original sampling. They contain the same information in a more

accessible form.
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Figure Captions

I A schematic of the model is given in Fig 1. Fig la shows the

external luminance distribution which we have taken to be a delta

function. Fig lb shows the external image after convolution with the line

spread function. Fix Ic illustrates ssmpling of the retinal image by

photoreceptors. Fig ld represents the interpolation process, which accepts

the coarsely sampled input from the photoreceptors and produces a more

finely spaced sampling on the neural unit lattice, Fig le. Te have drawn

the neural unit spacing as 1/3 the photoreceptor spacing: in general it

can be 1/N. Fig if illustrates peak detection on the neural unit lattice.

A peak detector (square) requires input from 3 adjacent neural units. Fig

I illustrates a separation detector: Peak(x) AND Peak (x+s) is OR'ed over

all x.

jIG. Ca) a prototype interpolation function, (b) a step function that

is blurred by the line spread function, (c) and then reconstructed d)

using the interpolation function in (a).

PlG. j (a) Interpolation by direct convolution. (b) Interpolation by

mutual coupling. -

See text for explanation.
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fJ~. jReprinted from Hirsch and Hylton, 1982 (Fig. 1). Fractional mnd

in spatial frequency. Af/f. as a function of reference frequency. f. for

three observers: 31, BA and XM. Ile straight lines passing through the

origin represent regions of constant angular Jnd. As.
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* SCHEMATIC MODEL OF POSITION PROCESSING
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ILLUSTRATION OF EDGE RECONSTRUCTION
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TWO POSSIBLE MECHANISMS OF NEURAL INTERPOLATION

a) Direct Convolution

1/3

b) Mutual Coupling
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.. IF

SPATIAL FREOUENCY DISCRIMINATION

0. -A a 00O/I /1 00As A a DOwls As 00"14

- / .

0 / -
0 

, 
.±44

02

S 4/ 5 $ - - O I 2 + m I,1
0.

Reermce Frequency (c/€eg)

05 [Owm l

0 As •007?/I As .0070/2 As • 0071 3

o,, I 4o lo0, w
I A

O2- / 1 'A-"''
I / / '

/ / , ,.-

RiIefencc Frequency Ic/eg)

02~ ,

S ,,:,

Reference Frequenocy (c /fifi

o ' FIGURE 4

S ,+]+,*-'*' -. *.-..J.



I
9
4

V

I

4 ~


